تبلیغات
دنیای شگفت2 - قضیه تالس
دنیای شگفت2
«دانش برترین داده های یزدان پاک است »

لینکدونی

آرشیو

لینکستان

صفحات جانبی

← آمار وبلاگ

  • کل بازدید :
  • بازدید امروز :
  • بازدید دیروز :
  • بازدید این ماه :
  • بازدید ماه قبل :
  • تعداد نویسندگان :
  • تعداد کل پست ها :
  • آخرین بازدید :
  • آخرین بروز رسانی :

قضیه تالس

در هندسه ،قضیه تالس این مطلب را بیان میکند که اگر A و B و C نقاط روی دایره باشند و خط AC ،قطر دایره باشد آن وقت زاویه ABC یک زاویه قائم خواهد بود. به بیان دیگر مرکزدایره محیطی یک مثلث روی یکی از اضلاع مثلث



قرار میگیرد اگر وتنها اگرآن مثلث قائم الزاویه باشد.
img/daneshnameh_up/9/9a/tl.jpg


اثبات

فرض کنیم O مرکز دایره باشد در آن موقع OA=OB=OC
به این ترتیب OAB و OBC مثلث متساوی الساقین خواهند بود.در نتیجه زوایای OCB=OBC و BAO=ABO.
فرض کنیم Y=BAO و X=OBC ، چون جمع زوایای داخلی مثلث برابر 180 درجه است پس

2Y+Z=180 2X+Q=180

همچنین میدانیم Z+Q=180 .حال اگر دو رابطه اول را با هم جمع و رابطه سوم را از آنها کم نماییم خواهیم داشت:

2Y+Z+2X+Q-(Z+Q)=180

پس خواهیم داشت:

Z+Q=90



تاریخچه

تالس اولین کسی نبود که این قضیه را کشف کرد قبل از او مصریان و بابلیان این قضیه را میدانستند ولی آنها نتوانسته بودند اثباتی برای آن بیان کنند. چون این قضیه اولین بار توسط تالس به اثبات رسید به نام او نیز معروف شد.البته تالس با استفاده از تعریف مثلث متساوی الساقین و نیز علم به این موضوع که جمع زوایای یک مثلث، 180 درجه است ،این قضیه را اثبات کرد.


louisweichbrodt.hatenablog.com
1396/03/1 ساعت 05 و 48 دقیقه و 18 ثانیه
This page definitely has all of the information and facts I needed concerning this subject and didn't know
who to ask.
BHW
1396/01/30 ساعت 20 و 30 دقیقه و 10 ثانیه
I wanted to thank you for this wonderful read!! I definitely loved every little bit of it.

I've got you bookmarked to check out new stuff you post…
 
لبخندناراحتچشمک
نیشخندبغلسوال
قلبخجالتزبان
ماچتعجبعصبانی
عینکشیطانگریه
خندهقهقههخداحافظ
سبزقهرهورا
دستگلتفکر

درباره وبلاگ

سال نو بر همه ی مردم عزیز ایران مبارک باد.
مدیر وبلاگ : amir mahdavi

آخرین پست ها

جستجو

نویسندگان